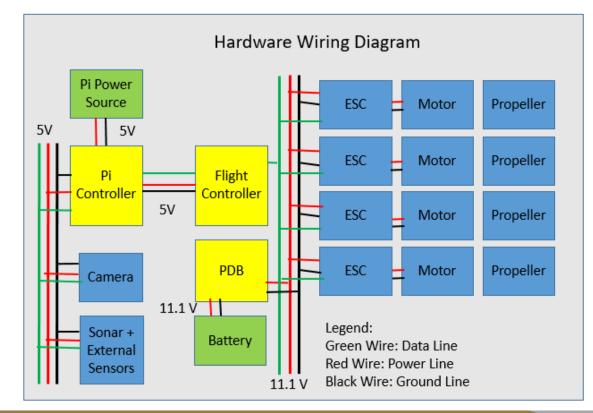


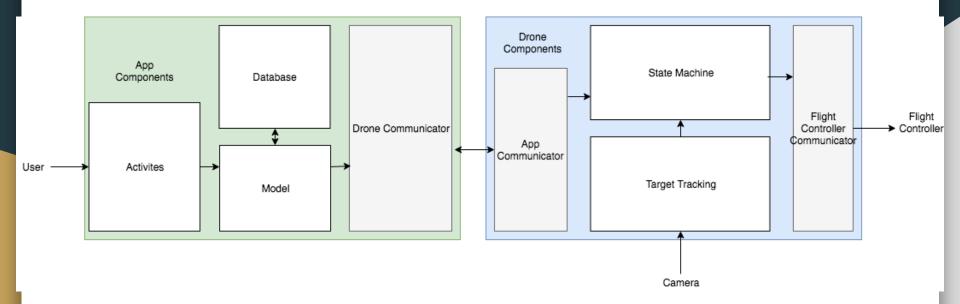
Team: sdmay19-42 Advisor: Zhengdao Wang Client: Mir Ahbab

Website: http://sdmay19-42.sd.ece.iastate.edu/

Project Plan


Problem Statement

• The Descarga Latin Dance Club on campus is having difficulties recording themselves and other members during performances.


• The main issue is that a camera man can be obtrusive on a dance floor and get in the way of the dancers themselves or other dancers that may or may not be on the floor at the same time.

• To solve this issue our client has hired us to design, build, and program an **autonomous quadcopter**. This quadcopter will be able to identify the target dancers and record them at a preset distance.

Conceptual Sketch - Hardware

Conceptual Sketch - Software

Nonfunctional Requirements

- Security
 - Ensure private use of the drone
 - Not susceptible to replay attack
- Useability
 - Fit for non-tech savvy people
 - Responsiveness
- Reliability
 - Stability
 - Endurance

Functional Requirements

- Video Quality
 - o 720p or better
 - 24 Frames per second or faster
- Flight Control
 - Must be autonomous
 - Must prioritize user control over autonomy
- Image Recognition and Tracking
 - Drone must follow target for full performance
 - Drone must keep target in frame for full performance

Constraints

Flight time: Must be able to fly for at least 5 continuous minutes

Budget: We are trying to keep the cost close to what team members contributed to the senior design pool

Weight: An ideal thrust to weight ratio is 2:1 at full throttle that way the drone can hover at half throttle

Constraint - Thrust to Weight Ratio

ML2212 MOTOR														
ltem NO.	Volts (V)	Prop	Throttle	Amps (A)	Watts (W)	Thrust (g)	Efficiency (g/W)	Operating temperature(°C)						
ML2212 920KV			65%	5.1	56.6	460	8.1							
		APC10*4.5	75%	7.4	82.1	590	7.2	55°C						
			85%	10.1	112.1	730	6.5							
			100%	13.4	148.7	860	5.8							

860(g) * 4 propellers at full throttle = 3,440 (g) of thrust

Our theoretical drone weight is 1,643.217(g) Achieves 2.09 : 1 Thrust to weight ratio

*Hovering should be achievable at ~59% throttle

Market Research

Quadcopters builds are well understood and well documented

By building our drone we can customize it to address our problem

Building our own does not require us to interface with proprietary hardware or software

-DJI Mavic 2

\$1,450

Our drone offers a good balance between price and functionality

HW/SW/Technology Platform(s)

- Hardware
 - Pi Model 3B
 - ZnDiy-BRY Crius All in One Flight Controller

• Software

- Android Studio
- ChibiOS RTOS
- Python 3

Risks and Mitigation

Risk: Malfunction resulting in damage to the drone and/or injury of persons

Mitigation: Implement Safety Protocols in the control loop Sensor Skepticism

Manual Override

Report Failures to User over App

Battery Safety: Observe safe Lithium Polymer battery practices

Resource and Costs

2 Semesters x \$55/Semester x 5 Students = \$550 Budget for Project

Semester 1 - \$400

- Build the base drone

Semester 2 - \$150

- Reserved for component upgrades and repairs

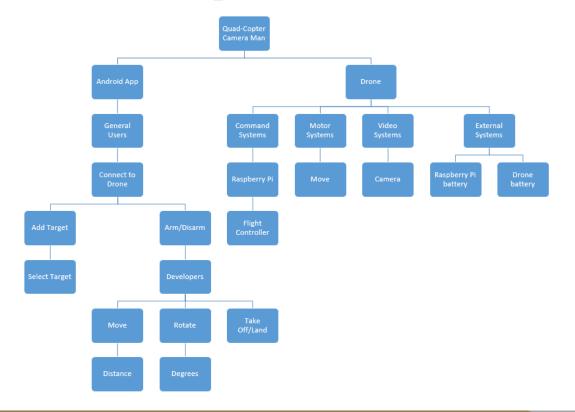
Current Cost of Drone = \$393.72

Cost Breakdown

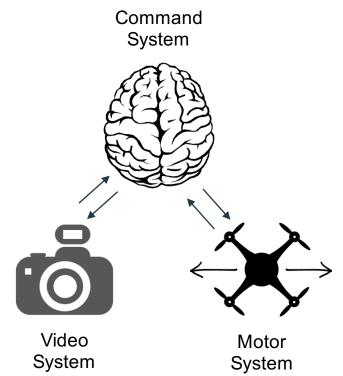
Internal Components	Model	Price
Processor	Rspbry Pi 3 Model B	\$34.99
PI power	KMASHI External Battery	\$10.99
Motor System		
Battery O-2	Gens Ace	\$56.05
Flight Controller	ZnDiy-BRY CRIUS All in One Pro	\$53.36
Power Distribution Board	Lumenier Mini 4	\$11.99
Motors	Gartt4 x 2212	\$135.72
ESC	Hobbywing Skywalker	\$0.00
Props	Ray Corp Gemfan	\$13.99
Video System		
Frame	JRLEC	\$16.90
Camera	Fosa USB Camera	\$8.99
Gymbal	None	
MicroSD	Kingston 16GB	\$5.75
Total Weight		
External Components		
Battery Charger	Passport P1 Mini (DYNC3015)	\$44.99
Total Cost		\$393.72

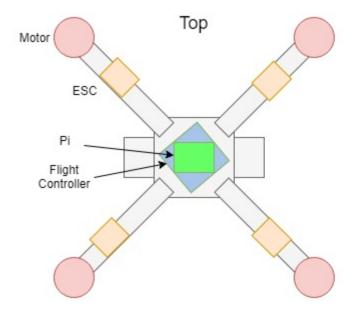
Project Milestones

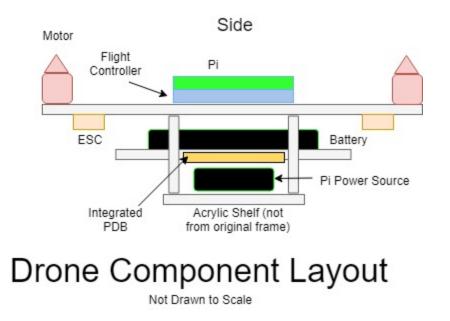
- Stage 1
 - Build Drone
 - **App**
 - Single Target Tracking
- Stage 2
 - Software/Hardware Integration
- Stage 3
 - Remote Control Drone
 - Single Target Following
- Stage 4
 - Multi Target Following


	Stage 1									Stage 2						Stage 3						Stage 4							
September	Octobe	r	Nover		December			January					Febr	ruary		March					April					May			
W1 W2 W3 W4	W1 W2 W	/3 W4	W1 W2	W3 W4	W1	W2	W3 V	4	W1 W2 W3 W4					W2	W3 V	/4	W1	W2	W	3 V	/4	W1	W2	W3	W4	W1	W2	W3	W4
Research	Research Single Target Tracking														Single Target Following						Multi Target Following								
Brain Storming		Base					Hardware/Software Integ					egration																	
												Drone-App interaction																	
	R					esearch Data Sheets																							
Do								Docur	umentation																				
															Hardwa	re/So	ftware I	Integr	ation (Testin))								
													Single Target Tracking (Tes					ting)											
	Base App (Testing)														Singlé				gle Ta	e Target Following (Testing)									
																				Multi Target Followi (Testing)				owing					
																	Drone-App Interaction (Tes					ting)							

System Design


Functional Decomposition


Detailed Design - Hardware


4 Modules:

- Command Systems
 - \circ How to Move
- Motor Systems
 - Makes Drone Move
- Video System
 - $\circ \quad \text{Records Video}$
- External Systems
 - Any Hardware not Mounted on the Drone

Detailed Design - Hardware

Quad Copter Camera Man Detailed Design - UI Distance RIGHT LEFT ö **u** a UP DOWN Quad Copter Camera Man time: 10 id: Stop DISARM ARM ADD TARGET SELECT TARGET CHANGE Rotate CW Degrees ROTATION ARM DISARM PAIR DRONE CONNECT DEV Not connected TAKE OFF LAND

V 8:00

Test Plan

Individual hardware component tests

- Command Systems
- Motor Systems
- Video Systems
- External Systems
- Individual Software component tests
 - Pi Software Systems
 - Android App Systems
- Combined/Full run tests

Prototype Implementations

- Simulation
 - Bare bones animation
 - Controlled test

Conclusion

Project Status

Current project status with respect to milestones

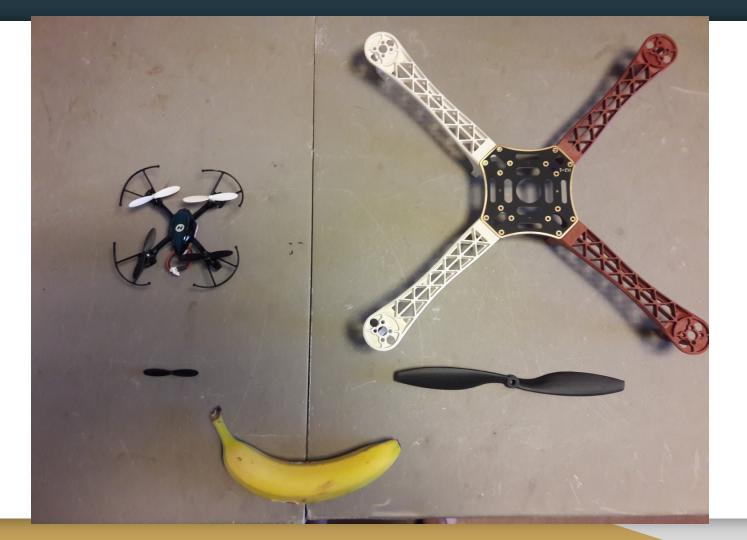
- Drone Built
- Base App
- Drone Remote Control
- Single Target Tracking
- Single Target Following
- Multi Target Following

What's Next?

- Establish communication between App and Drone
- Integrate Pi with Flight Controller
- Assemble Flight Controller into Hardware
- Fly drone
- Test drone

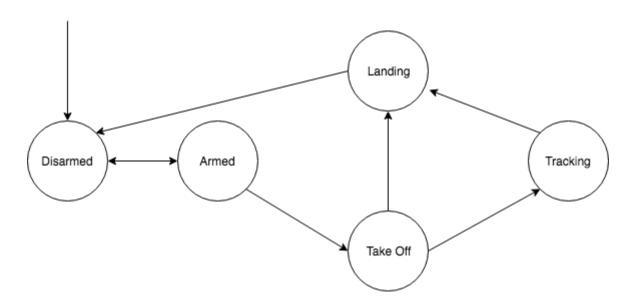
Contributions

Luke


- Android App
- Drone Communications
- Facial Encoding

Nate

- Trigonometry Libraries
- Image Utility Libraries
- Tracking Algorithm


• Alex

- ChibiOS RTOS
- Physical Drone R&D
- Physical Domain Elicitation
- Isaach
 - Android App
 - Drone Communications
- Aamid
 - Hardware Design
 - Physical Drone R&D

State Machine Diagram

Start

Questions?